Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127790

RESUMO

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Linfócitos T CD8-Positivos , Macrófagos/patologia , Glioma/genética , Leucócitos/patologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/patologia
3.
J Neurosurg Case Lessons ; 6(10)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37728245

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) in young patients is rare and often associated with vascular malformations, drug abuse, or genetic conditions. Early diagnosis and treatment are critical because of the potential risk of rebleeding and long-term consequences. This case report presents an unusual correlation between a prior traumatic incident and the manifestation of an atypical ICH 11 years later. OBSERVATIONS: A 37-year-old male presented with retroorbital headaches, confusion, and seizures. Imaging revealed an atypical ICH in the left middle temporal gyrus, accompanied by retained glass shards in the adjacent temporal muscle and bone. Angiography ruled out vascular malformations but suggested an eroded middle cerebral artery branch underneath an osseous defect potentially caused by a bone-transgressing glass shard. Surgical exploration confirmed the vessel as the source of the ICH and was followed by an uneventful hematoma removal and postoperative course. LESSONS: This case underscores the significance of recognizing delayed complications resulting from retained foreign bodies (FBs). Complete removal of extracranial FBs is imperative to prevent further harm. Clinicians should maintain an awareness of the potential long-term consequences and complications associated with FBs, utilizing comprehensive diagnostics to detect and localize FBs. Timely intervention such as resection or planned follow-up is essential for effective management and mitigation of adverse outcomes.

4.
Bioengineering (Basel) ; 10(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37508827

RESUMO

Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo. SkMbs were cultured on a type-I-collagen scaffold with (co-culture) or without (monoculture) SVF. Large-scale muscle-like tissue showed an increase in the maturation index over time (49.18 ± 1.63% and 76.63 ± 1.22%, at 9 and 11 days, respectively) and a similar force of contraction in mono- (43.4 ± 2.28 µN) or co-cultured (47.6 ± 4.7 µN) tissues. Four weeks after implantation in subcutaneous pockets of nude rats, the vessel length density within the constructs was significantly higher in SVF co-cultured tissues (5.03 ± 0.29 mm/mm2) compared to monocultured tissues (3.68 ± 0.32 mm/mm2) (p < 0.005). Although no mature neuromuscular junctions were present, nerve-like structures were predominantly observed in the engineered tissues co-cultured with SVF cells. This study demonstrates that SVF cells can support both in vivo vascularization and innervation of contractile muscle-like tissues, making significant progress towards clinical translation.

5.
Sci Transl Med ; 15(705): eadf5302, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467314

RESUMO

Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.


Assuntos
Glioblastoma , Ácido N-Acetilneuramínico , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Glioblastoma/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Fagocitose/fisiologia , Microglia/metabolismo
6.
J Hepatol ; 79(3): 666-676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290592

RESUMO

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Assuntos
COVID-19 , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite Autoimune , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Fígado/patologia , Receptores de Antígenos de Linfócitos T , Vacinação
7.
Cell Rep Med ; 4(1): 100909, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652918

RESUMO

In this issue, Bader et al.1 characterize the proteomes of diffuse glioma brain tumors by liquid chromatography mass spectrometry and classify isocitrate dehydrogenase (IDH)-mutant gliomas into two subtypes, which differ in oncogenic pathways and aerobic/anaerobic energy metabolism.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Proteoma/genética , Mutação , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética
8.
Commun Biol ; 5(1): 1303, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36435836

RESUMO

Interplay between non-cancerous cells (immune, fibroblasts, mesenchymal stromal cells (MSC), and endothelial cells (EC)) has been identified as vital in driving tumor progression. As studying such interactions in vivo is challenging, ex vivo systems that can recapitulate in vivo scenarios can aid in unraveling the factors impacting tumorigenesis and metastasis. Using the synthetic tumor microenvironment mimics (STEMs)-a spheroid system composed of breast cancer cells (BCC) with defined human MSC and EC fractions, here we show that EC organization into vascular structures is BC phenotype dependent, and independent of ERα expression in epithelial cancer cells, and involves MSC-mediated Notch1 signaling. In a 3D-bioprinted model system to mimic local invasion, MDA STEMs collectively respond to serum gradient and form invading cell clusters. STEMs grown on chick chorioallantoic membrane undergo local invasion to form CAM tumors that can anastomose with host vasculature and bear the typical hallmarks of human BC and this process requires both EC and MSC. This study provides a framework for developing well-defined in vitro systems, including patient-derived xenografts that recapitulate in vivo events, to investigate heterotypic cell interactions in tumors, to identify factors promoting tumor metastasis-related events, and possibly drug screening in the context of personalized medicine.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Humanos , Feminino , Neoplasias da Mama/genética , Células Endoteliais , Mama , Junções Comunicantes , Microambiente Tumoral
9.
Nat Commun ; 13(1): 6777, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351919

RESUMO

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Estudos Transversais , SARS-CoV-2 , Autoimunidade , Estudos Prospectivos , Síndrome de COVID-19 Pós-Aguda
10.
Front Neurosci ; 16: 992165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340780

RESUMO

Background: Growing evidence suggests that the central nervous system is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), since infected patients suffer from acute and long-term neurological sequelae. Nevertheless, it is currently unknown whether the virus affects the brain cortex. The purpose of this study was to assess the cortical gray matter volume, the cortical thickness, and the cortical surface area in a group of SARS-CoV-2 infected patients with neurological symptoms compared to healthy control subjects. Additionally, we analyzed the cortical features and the association with inflammatory biomarkers in the cerebrospinal fluid (CSF) and plasma. Materials and methods: Thirty-three patients were selected from a prospective cross-sectional study cohort during the ongoing pandemic (August 2020-April 2021) at the university hospitals of Basel and Zurich (Switzerland). The group included patients with different neurological symptom severity (Class I: nearly asymptomatic/mild symptoms, II: moderate symptoms, III: severe symptoms). Thirty-three healthy age and sex-matched subjects that underwent the same MRI protocol served as controls. For each anatomical T1w MPRAGE image, regional cortical gray matter volume, thickness, and surface area were computed with FreeSurfer. Using a linear regression model, cortical measures were compared between groups (patients vs. controls; Class I vs. II-III), with age, sex, MRI magnetic field strength, and total intracranial volume/mean thickness/total surface area as covariates. In a subgroup of patients, the association between cortical features and clinical parameters was assessed using partial correlation adjusting for the same covariates. P-values were corrected using a false discovery rate (FDR). Results: Our findings revealed a lower cortical volume in COVID-19 patients' orbitofrontal, frontal, and cingulate regions than in controls (p < 0.05). Regional gray matter volume and thickness decreases were negatively associated with CSF total protein levels, the CSF/blood-albumin ratio, and CSF EN-RAGE levels. Conclusion: Our data suggest that viral-triggered inflammation leads to neurotoxic damage in some cortical areas during the acute phase of a COVID-19 infection in patients with neurological symptoms.

11.
Sci Adv ; 8(26): eabn9440, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776791

RESUMO

A patient-tailored, ex vivo drug response platform for glioblastoma (GBM) would facilitate therapy planning, provide insights into treatment-induced mechanisms in the immune tumor microenvironment (iTME), and enable the discovery of biomarkers of response. We cultured regionally annotated GBM explants in perfusion bioreactors to assess iTME responses to immunotherapy. Explants were treated with anti-CD47, anti-PD-1, or their combination, and analyzed by multiplexed microscopy [CO-Detection by indEXing (CODEX)], enabling the spatially resolved identification of >850,000 single cells, accompanied by explant secretome interrogation. Center and periphery explants differed in their cell type and soluble factor composition, and responses to immunotherapy. A subset of explants displayed increased interferon-γ levels, which correlated with shifts in immune cell composition within specified tissue compartments. Our study demonstrates that ex vivo immunotherapy of GBM explants enables an active antitumoral immune response within the tumor center and provides a framework for multidimensional personalized assessment of tumor response to immunotherapy.

12.
Dev Cell ; 57(15): 1847-1865.e9, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803280

RESUMO

Immune surveillance is critical to prevent tumorigenesis. Gliomas evade immune attack, but the underlying mechanisms remain poorly understood. We show that glioma cells can sustain growth independent of immune system constraint by reducing Notch signaling. Loss of Notch activity in a mouse model of glioma impairs MHC-I and cytokine expression and curtails the recruitment of anti-tumor immune cell populations in favor of immunosuppressive tumor-associated microglia/macrophages (TAMs). Depletion of T cells simulates Notch inhibition and facilitates tumor initiation. Furthermore, Notch-depleted glioma cells acquire resistance to interferon-γ and TAMs re-educating therapy. Decreased interferon response and cytokine expression by human and mouse glioma cells correlate with low Notch activity. These effects are paralleled by upregulation of oncogenes and downregulation of quiescence genes. Hence, suppression of Notch signaling enables gliomas to evade immune surveillance and increases aggressiveness. Our findings provide insights into how brain tumor cells shape their microenvironment to evade immune niche control.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica , Citocinas , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Evasão da Resposta Imune , Interferon gama/metabolismo , Camundongos , Receptores Notch , Microambiente Tumoral/fisiologia
13.
Front Immunol ; 13: 890517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711466

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated symptoms, named coronavirus disease 2019 (COVID-19), have rapidly spread worldwide, resulting in the declaration of a pandemic. When several countries began enacting quarantine and lockdown policies, the pandemic as it is now known truly began. While most patients have minimal symptoms, approximately 20% of verified subjects are suffering from serious medical consequences. Co-existing diseases, such as cardiovascular disease, cancer, diabetes, and others, have been shown to make patients more vulnerable to severe outcomes from COVID-19 by modulating host-viral interactions and immune responses, causing severe infection and mortality. In this review, we outline the putative signaling pathways at the interface of COVID-19 and several diseases, emphasizing the clinical and molecular implications of concurring diseases in COVID-19 clinical outcomes. As evidence is limited on co-existing diseases and COVID-19, most findings are preliminary, and further research is required for optimal management of patients with comorbidities.


Assuntos
COVID-19 , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Pandemias , Quarentena , SARS-CoV-2
14.
Immunology ; 166(4): 429-443, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470422

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented challenges worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and has a complex interaction with the immune system, including growing evidence of sex-specific differences in the immune response. Sex-disaggregated analyses of epidemiological data indicate that males experience more severe symptoms and suffer higher mortality from COVID-19 than females. Many behavioural risk factors and biological factors may contribute to the different immune response. This review examines the immune response to SARS-CoV-2 infection in the context of sex, with emphasis on potential biological mechanisms explaining differences in clinical outcomes. Understanding sex differences in the pathophysiology of SARS-CoV-2 infection will help promote the development of specific strategies to manage the disease.


Assuntos
COVID-19 , Feminino , Humanos , Imunidade , Masculino , Pandemias , Fatores de Risco , SARS-CoV-2 , Fatores Sexuais
15.
Front Surg ; 9: 1078735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605165

RESUMO

Background: The minipterional (MPT) craniotomy is a workhorse approach for clipping of middle cerebral artery (MCA) aneurysms. Because it aims to reach the skull base, traction on the temporal muscle is required. As a result, patients may suffer from transient postoperative temporal muscle discomfort. The sylvian keyhole approach (SKA) represents an alternative craniotomy for the clipping of MCA aneurysms. The aims of this study are to describe the operative technique of the SKA and to discuss the benefits and disadvantages compared to the MPT craniotomy. Methods: In this technical note, we report the experience gained with the SKA. This experience was acquired with virtual reality, 3D-printed models, and anatomical dissections. We also present two clinical cases. Results: The SKA is centered on the distal sylvian fissure and tailored toward the specific MCA aneurysm. Traction to the temporal muscle is not necessary because access to the skull base is not sought. With the SKA, dissection of the MCA is performed from distal to proximal, aiming for a proximal control at the level of the M1-segment. The limen insulae was identified as a key anatomical landmark for approach selection. The SKA offers good surgical maneuverability when the aneurysm is located at the level or distal to the limen. The MPT craniotomy, however, remains the most appropriate approach when the aneurysm is located proximal to the limen. Conclusion: The SKA represents a feasible and innovative alternative approach to the MPT craniotomy for surgical clipping of unruptured MCA aneurysms located at the level or distal to the limen insulae.

16.
Surg Neurol Int ; 12: 441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777905

RESUMO

BACKGROUND: Brain imaging in psychiatry, especially by first-episode psychiatric symptoms, is unfortunately not a standard procedure in psychiatric clinics and is recommended only if indicated by history or if associated with neurological findings. As a result, the most serious diagnoses can be delayed or missed. CASE DESCRIPTION: We describe a patient who presented with psychiatric symptoms admitted initially to a psychiatric clinic. Thanks to routine imaging the diagnosis of a brain tumor could be made with prompt transfer to neurosurgery. CONCLUSION: Brain imaging should be a mandatory procedure upon admission to a psychiatric clinic also in patients who present with exclusive psychiatric symptoms.

17.
Leukemia ; 35(10): 2875-2884, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480104

RESUMO

Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients' CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets. Overall, we observed that dual targeting of JAK2 and ERK1/2 was able to enhance therapeutic efficacy suggesting a novel treatment approach for MPN.


Assuntos
Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Proliferação de Células , Feminino , Humanos , Janus Quinase 2/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia
18.
Circulation ; 144(11): 893-908, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34192892

RESUMO

BACKGROUND: Cardiovascular diseases and chronic kidney disease (CKD) are highly prevalent, aggravate each other, and account for substantial mortality. Both conditions are characterized by activation of the innate immune system. The alarmin interleukin-1α (IL-1α) is expressed in a variety of cell types promoting (sterile) systemic inflammation. The aim of the present study was to examine the role of IL-1α in mediating inflammation in the setting of acute myocardial infarction (AMI) and CKD. METHODS: We assessed the expression of IL-1α on the surface of monocytes from patients with AMI and patients with CKD and determined its association with atherosclerotic cardiovascular disease events during follow-up in an explorative clinical study. Furthermore, we assessed the inflammatory effects of IL-1α in several organ injury models in Il1a-/- and Il1b-/- mice and investigated the underlying mechanisms in vitro in monocytes and endothelial cells. RESULTS: IL-1α is strongly expressed on the surface of monocytes from patients with AMI and CKD compared with healthy controls. Higher IL-1α surface expression on monocytes from patients with AMI and CKD was associated with a higher risk for atherosclerotic cardiovascular disease events, which underlines the clinical relevance of IL-1α. In mice, IL-1α, but not IL-1ß, mediates leukocyte-endothelial adhesion as determined by intravital microscopy. IL-1α promotes accumulation of macrophages and neutrophils in inflamed tissue in vivo. Furthermore, IL-1α on monocytes stimulates their homing at sites of vascular injury. A variety of stimuli such as free fatty acids or oxalate crystals induce IL-1α surface expression and release by monocytes, which then mediates their adhesion to the endothelium via IL-1 receptor-1. IL-1α also promotes expression of the VCAM-1 (vascular cell adhesion molecule-1) on endothelial cells, thereby fostering the adhesion of circulating leukocytes. IL-1α induces inflammatory injury after experimental AMI, and abrogation of IL-1α prevents the development of CKD in oxalate or adenine-fed mice. CONCLUSIONS: IL-1α represents a key mediator of leukocyte-endothelial adhesion and inflammation in AMI and CKD. Inhibition of IL-1α may serve as a novel anti-inflammatory treatment strategy.


Assuntos
Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Interleucina-1alfa/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Adesão Celular/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1alfa/farmacologia , Camundongos , Monócitos/metabolismo , Infarto do Miocárdio/metabolismo , Neutrófilos/metabolismo , Insuficiência Renal Crônica/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
19.
Kidney Int ; 100(5): 1081-1091, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34237325

RESUMO

Chronic kidney disease (CKD) represents a global public health problem with high disease related morbidity and mortality. Since CKD etiology is heterogeneous, early recognition of patients at risk for progressive kidney injury is important. Here, we evaluated the tubular epithelial derived glycoprotein dickkopf-3 (DKK3) as a urinary marker for the identification of progressive kidney injury in a non-CKD cohort of patients with chronic obstructive pulmonary disease (COPD) and in an experimental model. In COSYCONET, a prospective multicenter trial comprising 2,314 patients with stable COPD (follow-up 37.1 months), baseline urinary DKK3, proteinuria and estimated glomerular filtration rate (eGFR) were tested for their association with the risk of declining eGFR and the COPD marker, forced expiratory volume in one second. Baseline urinary DKK3 but not proteinuria or eGFR identified patients with a significantly higher risk for over a 10% (odds ratio: 1.54, 95% confidence interval: 1.13-2.08) and over a 20% (2.59: 1.28-5.25) decline of eGFR during follow-up. In particular, DKK3 was associated with a significantly higher risk for declining eGFR in patients with eGFR over 90 ml/min/1.73m2 and proteinuria under 30 mg/g. DKK3 was also associated with declining COPD marker (2.90: 1.70-4.68). The impact of DKK3 was further explored in wild-type and Dkk3-/- mice subjected to cigarette smoke-induced lung injury combined with a CKD model. In this model, genetic abrogation of DKK3 resulted in reduced pulmonary inflammation and preserved kidney function. Thus, our data highlight urinary DKK3 as a possible marker for early identification of patients with silent progressive CKD and for adverse outcomes in patients with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Insuficiência Renal Crônica , Animais , Progressão da Doença , Taxa de Filtração Glomerular , Humanos , Rim , Camundongos , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Insuficiência Renal Crônica/diagnóstico
20.
Swiss Med Wkly ; 151: w20501, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34000060

RESUMO

OBJECTIVE: The management of brain tumour patients who would like to resume driving is complex, and needs multidisciplinary input and a consensus among treating physicians. The Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM) aim to provide guidance on how to assess "fitness-to-drive" of glioblastoma patients and to harmonise the relevant procedures in Switzerland. METHODS: At several meetings, Swiss neuro-oncologists discussed common practices on how to advise patients with a stable, i.e., non-progressive, glioblastoma, who wish to resume driving after the initial standard tumour treatment. All participants of the SwissNOS meetings were invited twice to return a questionnaire (modified Delphi process) on specific tools/procedures they commonly use to assess "fitness-to-drive" of their patients. Answers were analysed to formulate a tentative consensus for a structured and reasonable approach. RESULTS: Consensus on minimum requirements for a "fitness-to-drive" programme for glioblastoma patients could be reached among Swiss neuro-oncologists. The recommendations were based on existing guidelines and expert opinions regarding patients with seizures, visual disturbances, cognitive impairment or focal deficits for safe driving. At this point in time, the Swiss neuro-oncologists agreed on the following requirements for glioblastoma patients after the initial standard therapy and without a seizure for at least 12 months: (1) stable cranial magnetic resonance imaging (MRI) according to Response Assessment in Neuro-Oncology (RANO) criteria, to be repeated every 3 months; (2) thorough medical history, including current or new medication, a comprehensive neurological examination at baseline (T0) and every 3 months thereafter, optionally an electrocencephalogram (EEG) at baseline; (3) ophthalmological examination including visual acuity and intact visual fields; and (4) optional neuropsychological assessment with a focus on safe driving. Test results have to be compatible with safe driving at any time-point. Patients should be informed about test results and optionally sign a document. CONCLUSIONS: We propose regular thorough clinical neurological examination and brain MRI, optional EEG, neuropsychological and visual assessments to confirm "fitness-to-drive" for glioblastoma patients after initial tumour-directed therapy. The proposed "fitness-to-drive" assessments for glioblastoma patients serves as the basis for a prospective Swiss Pilot Project GLIODRIVE (BASEC ProjectID 2020-00365) to test feasibility, adherence and safety in a structured manner for patients who wish to resume driving. Research will focus on confirming the usefulness of the proposed tools in predicting "fitness-to-drive" and match results with events obtained from the road traffic registry (Strassenverkehrsamt).


Assuntos
Condução de Veículo , Glioblastoma , Medicina Legal , Glioblastoma/terapia , Humanos , Projetos Piloto , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...